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The TeraScale Browser: 
Multiresolution On-Demand Dataflow
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The TeraScale Browser deploys CASC 
research to help biggest ASCI runs

History:
Early prototype “on the side” in 
ASCI
Devised basic data flow, 
compression methods for Big 
Science runs
Helped attract world-class 
researchers, development team

Uses “Prepare, browse, select”
Works on largest data sets
Fully interactive, esp. time slider
Common visuals
Parallel and remote display



CS Research at LLNL-3CASC

The TeraScale Browser provides quick 
access to common visuals

Core visuals
— Ortho slices
— Iso-surfaces 
— Volume render
— Timestep controls
— Material boundaries 
— Arbitrary cut planes

Tunable performance
— Caching of 

slices/surfaces 
— Fast load/decompress
— Multi-resolution

Display anywhere
— Wall, console, remote
— Movie generation

Scripting
— Embedded python interpreter
— Query and set most system properties
— Outside apps can drive and be driven 

by the TSB
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Examples of “Big Science” datasets

5120 ASCI White processors for largest run, 
Billion-atom 3D MD studies
30X compression, from 25TB to under 1TB, 10% 
co-process overhead

Gordon Bell Prize, largest Richtmyer-Meshkov run
sPPM simulation with 24 billion zones ran on 5832 
processors of Blue Pacific machine at 1.18TF
could not store 2.4TB of data without compression
Wavelet library reduced space 2X & time 10x
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Terascale science requires orders-of-
magnitude better visualization data flow

Loss of
information

Simple sub-sampling 
and down-selection

“Write a check” algorithm
— massive storage
— massively parallel

Too coarse

Too expensive

Storage/compute resources

Multi-resolution
optimizer
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ROAM maximizes the displayed accuracy, 
which changes with the viewpoint
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A ROAM mesh adapts accuracy by performing 
a few splits and merges each frame
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View-dependent 490M Triangle Surface

Data details
— Isocontour of a 8B zone dataset
— 490M triangles in the surface (5.5GB compressed)
— 1 hour of preprocessing on desktop PC
— 526MB of final disk space

Algorithmic features
— Implicit data storage reduction
— Out-of-core rendering
— Demand driven I/O
— View dependent display

Host
— Dell Laptop 1Ghz CPU
— nVidia GeForce Go graphics
— Sustained 10fps
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The ROAM optimizer produces a “trickle” of data 
during interaction with server-side geometry

ROAM 
geometry 
server

ROAM-enabled 
graphics chips

Split/Merge 
operations 
(3% of scene)

Viewpoint 
updates
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We optimize per view in a resampled-block 
hardware volume renderer

Hardware-texture based volume 
visualization
Octree decomposition of space 
and resolution
Adaptive rendering, driven by 
Viewpoint, Error, Rendering 
Budget
Efficient Error Calculation, 
reduced compositing error
Cache-friendly paging
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Interactive view-dependent isocontouing 
used 3D ROAM split-merge

Shaded surface                  Triangle mesh               Adaptive mesh 
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The software dataflow for big-data 
interaction
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